Overview of Electronic Correlation

A locked box called Schrödinger Equation

 $\hat{H}\Psi = E\Psi$

Question:

What would be the world,

if
$$\frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}$$
?

Answer:

Mathematics was much more easier than it is!

In addition to Schrödinger, Ψ must be antisymmetric.

It is why, half of the computational chemistry exists!

Electron is Fermion!

 Ψ for two-electron system must satisfy

$$\Psi(x_1, x_2) = -\Psi(x_2, x_1)$$
 (Antisymmetricity)

There exist infinite number of antisymmetric functions, e.g.,

$$\Psi(x_1, x_2) = f(1)g(2) - g(1)f(2)$$

Determinantal wave function

There is a compact way to describe an antisymmetric wave function:

Slater determinant

$$\Psi(x_1, x_2) = \begin{vmatrix} f(1) & g(1) \\ f(2) & g(2) \end{vmatrix}$$

Sometimes we are going to take an exam, and ...

what we think (Before the exam)

what we get
(After the exam)

Determinantal wave function

Are all determinants antisymmetric? Sure

$$\Psi(x_1, x_2) = \begin{vmatrix} f(1) & g(1) \\ f(2) & g(2) \end{vmatrix}$$

Are all antisymmetrics determinant?

Never!

Single Slater determinants are unique in many ways. They are

- > Efficient
- > Compact
- > Simple to manipulate
- > Simple to store
- > Simple to compute

BUT

Electrons are not single determinants!

We like the electrons in real molecular systems adopt ...

Single Slater determinant

But they are not

So, what they actually are?

The exact solution is unknown. Are we helpless?

No, just expand it!

It is a correlated wave function!

General antisymmetric wave function for many-electron systems

Single determinants

$$\Psi = C_1 D_1 + C_2 D_2 + \cdots$$

How about the coefficients?

Correlation methods try to obtain the coefficients in different ways:

Configuration Interaction (CI)

Energy based

Multi-Configuration Self-Consistent Field (MC-SCF)

Combines SCF and CI

Coupled-Cluster (CC)

Some coefficients are guess in sensible manner

Møller-Plesset Perturbation (MP)

Approximate solution to Schrodinger equation

Density Functional Theory (DFT)

Estimates the correlation energy

Static vs Dynamic correlation

Planar square cyclobutadiene pi molecular orbitals:

It seems that something is wrong with respect to the molecular symmetry!

At least two equivalent configurations are required.

It is static correlation.

What is dynamic correlation?

To be continued ...